PV arc-fault feature extraction and detection based on bayesian support vector machines
نویسندگان
چکیده
In a PV system, DC arc is regarded as a serious fault, which might cause circuit damage and trigger fires. The arc fault, however, is hard to detect due to the special fields of photovoltaic systems: constant direct current without zerocrossing point, sophisticated components leading to noise interruption, and usually occupying large area. Therefore, detectable characteristics are of great importance to diagnosis and alarm of fault arcs in PV systems. In this paper, we presented a classification method of separating arcing and non-arcing in the feature space. First, data sets of current signal were sampled by designing field experiments with “pull apart” method for arc ignition. Then seven features in both time and frequency domains were defined and two of them in each domain were selected to train BSVM. In order to simplify the computation, the trained BSVM network was replaced by a separating line, which was proved to have a better performance of classification. Testing results showed that this method could diagnose fault arcs with high accuracy. But whether this method is suitable for other PV systems needs to be verified in further work.
منابع مشابه
Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملDetection of high impedance faults in distribution networks using Discrete Fourier Transform
In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کامل